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B ! RL ! H

CB = diag( c2
b1

, . . . , c2
bH

)

A ! RM ×H

p(Y |A, B ) ! exp
!

"
#Y " BA�#2

Fro

2! 2

"

Y = BA� + E

Y ! RL×M

CA = diag(c2
a1

, . . . , c2
aH

)

p(B ) ! exp
�

"
tr( BC−1

B B�)
2

�

H ! min(L,M)
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Bayesian Matrix Factorization (BMF) 
[Salakhutdinov&Mnih08]

YL

M

!

H

H
L

M

B
A!

p(A) ∝ exp
�
− tr( AC−1

A A�)
2

�

Observations:

Parameters:

Hyperparameters:

Likelihood:

Priors:

Y U = BA !Approximate with a low rank matrix 

cah cbharranged so that is non-increasing.
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r(A,B)

= KL ( r(A,B)�p(A,B|Y )) + const.

p(A,B|Y ) = argmin
r

F (r)

min
r

F (r )

s.t. r (A, B ) ! G

F (r) =
!

log
r(A,B)

p(Y |A,B)p(A)p(B)

"
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Free Energy Minimization (FEM)

Trial posterior:
Free Energy:

F (r )(Rigorous) Bayes posterior is obtained if we could minimize .

Since minimization is intractable, some restriction is imposed.

p(A, B |Y ) ! p(Y |A, B )p(A)p(B )
!UBayes = �BA��p(A,B|Y )

Computationally intractable!

Bayes posterior�•

Bayes estimator�•

Need approximation method.
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A

B

rVB (A,B) = r(A)r(B)

A = (a1, . . . , aH ) = (!a1, . . . , !aM )!

B = (b1, . . . , bH ) = (!b1, . . . , !bL )!
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Variational Bayesian Approximation

- Matrix-wise independence assumption         
                                          [Bishop2001,Lim&Teh2007]

- Column-wise independence assumption 
                                          [Raiko et al.2007]

Good News:
Analytic SimpleVB solution was 
obtained [Nakajima+NIPS2010].

VB

SimpleVB

r SimpleVB(A, B ) =
H!

h=1

r (ah )
H!

h=1

r (bh )

Analytic VB solution?

Tractable iterative (local search) algorithm was proposed.
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In this paper, we

- Theoretically show that solutions of SimpleVB and VB coincide.

- Experimentally show the usefulness.

Global Analytic Solution for (non-simple) VB is available.

Local minima problem is avoided with less calculation time. 

Notes: 
- Assumed fully observed matrix (cannot be applied to collaborative filtering scenario).
- Noise variance needs to be optimized (e.g., by naive 1-D search).
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r VB (A, B ) =
M�

m =1

NH (�am ; ��am , ΣA )
L�

l =1

NH (�bl ;
��bl , ΣB ).
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Theorem 1 A = (a1, . . . , aH ) = (!a1, . . . , !aM )!

B = (b1, . . . , bH ) = (!b1, . . . , !bL )!

- VB posterior is Gaussian: 

This is within SimpleVB restriction!

SimpleVB solution is VB solution!

Results obtained in [Nakajima+NIPS2010] give
                         (non-simple) VB posterior analytically. 

r VB (A, B ) =
M�

m=1

NH (�am; ��am, DA)
L�

l=1

NH (�bl;
��bl, DB). DA , DB ! RH ! H : diagonal

Theorem 1:
            Minimizer of free energy has diagonal covariances.

(Proof comes after Conclusion.)
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!A =
"

#!a1, . . . , #!aM

$!
= Y ! !B

! A

" 2 , ! A = " 2
"

!B! !B + L! B + " 2C" 1
A

$" 1
,

!B =
%

#!b1, . . . ,
#!bL

&!

= Y !A
! B

" 2 , ! B = " 2
"

!A! !A + M ! A + " 2C" 1
B

$" 1
.

c2
ah

= ! !ah ! 2/M + ( ! A )hh , c2
bh

= ! !bh ! 2/L + ( ! B )hh .

σ2 =
�Y �2

Fro − tr(2 Y ! !B !A! ) + tr
"

( !A! !A + MΣA)( !B! !B + LΣB)
#

LM

NIKON CORPORATION
Core Technology Center

December 12, 2011

Iterative Algorithm [Bishop99, Lim&Teh07]

Update rules:

For empirical Bayes:

For unknown noise variance:

Analytic Method (Ours)
! 2Estimate posterior, given the noise variance     :

Use global analytic solution.

Perform naive 1-D search.

For unknown noise variance:
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L = 100,

M = 300,

H ∗ = 20.

L = 70,

M = 300,

H
∗ = 40.
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Result with artificial data
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Figure 1: Experimental results forArtiÞcial1 dataset, where the data dimension isL = 100, the
number of samples isM = 300, and the true rank isH ! = 20.
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Figure 2: Experimental results forArtiÞcial2dataset (L = 70, M = 300, andH ! = 40).

estimated from observation. We use the full-rank model (i.e.,H = min( L, M )), and expect the
ADS effect to automatically Þnd the true rankH ! .

Figure 1 shows the free energy, the computation time, and the estimated rank over iterations for an
artiÞcial (ArtiÞcial1) dataset withL = 100, M = 300, andH ! = 20. We randomly createdtrue
matricesA! ! RM " H !

andB ! ! RL" H !
so that each entry ofA! andB ! follows N1(0, 1). An

observed matrixY was created by adding a noise subject toN1(0, 1) to each entry ofB ! A!# .

The iterative algorithm consists of the update rules (6)Ð(9). Initial values were set in the following
way: Â andB̂ are randomly created so that each entry followsN1(0, 1). Other variables are set to
! A = ! B = CA = CB = I H and" 2 = 1 . Note that we rescaleY so that" Y " 2

Fro/ (LM ) = 1 ,
before starting iteration. We ran the iterative algorithm 10 times, starting from different initial
points, and each trial is plotted by a solid line in Figure 1. The analytic solution consists of applying
Corollary 2 combined with a naive 1-dimensional search for noise variance" 2 estimation [17]. The
analytic solution is plotted by the dashed line. We see that the analytic solution estimates the true
rankĤ = H ! = 20 immediately (# 0.1 sec on average over10 trials), while the iterative algorithm
does not converge in60sec.

Figure 2 shows experimental results on another artiÞcial dataset (ArtiÞcial2) whereL = 70, M =
300, andH ! = 40. In this case, all the10 trials of the iterative algorithm are trapped at local
minima. We empirically observed a tendency that the iterative algorithm suffers from the local
minima problem whenH ! /H $ 1 is large.

4.3 Experiment on Benchmark Data

Figures 3 and 4 show experimental results on theSatelliteand theSpectfdatasets available from
the UCI repository [1], showing tendencies to Figures 1 and 2. We also conducted experiments on
various benchmark datasets, and found that the iterative algorithm typically converges slowly, and
sometimes suffers from the local minima problem, while our analytic-form gives the global solution
immediately (further experimental results on various datasets with different initialization schemes
are shown in Appendix B in the supplementary).
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Figure 1: Experimental results for ArtiÞcial1 dataset, where the data dimension is L = 100, the
number of samples is M = 300, and the true rank is H ∗ = 20.
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Figure 2: Experimental results for ArtiÞcial2dataset (L = 70, M = 300, and H ∗ = 40).

estimated from observation. We use the full-rank model (i.e., H = min(L, M )), and expect the
ADS effect to automatically find the true rank H ∗.

Figure 1 shows the free energy, the computation time, and the estimated rank over iterations for an
artificial (ArtiÞcial1) dataset with L = 100, M = 300, and H ∗ = 20. We randomly created true
matrices A∗ ∈ RM ×H !

and B ∗ ∈ RL ×H !
so that each entry of A∗ and B ∗ follows N1(0, 1). An

observed matrix Y was created by adding a noise subject to N1(0, 1) to each entry of B ∗A∗#.

The iterative algorithm consists of the update rules (6)–(9). Initial values were set in the following
way: !A and !B are randomly created so that each entry follows N1(0, 1). Other variables are set to
! A = ! B = CA = CB = I H and " 2 = 1. Note that we rescale Y so that ‖Y‖2

Fro/ (LM ) = 1,
before starting iteration. We ran the iterative algorithm 10 times, starting from different initial
points, and each trial is plotted by a solid line in Figure 1. The analytic solution consists of applying
Corollary 2 combined with a naive 1-dimensional search for noise variance " 2 estimation [17]. The
analytic solution is plotted by the dashed line. We see that the analytic solution estimates the true
rank !H = H ∗ = 20 immediately (∼ 0.1 sec on average over 10 trials), while the iterative algorithm
does not converge in 60 sec.

Figure 2 shows experimental results on another artificial dataset (ArtiÞcial2) where L = 70, M =
300, and H ∗ = 40. In this case, all the 10 trials of the iterative algorithm are trapped at local
minima. We empirically observed a tendency that the iterative algorithm suffers from the local
minima problem when H ∗/H ≤ 1 is large.

4.3 Experiment on Benchmark Data

Figures 3 and 4 show experimental results on the Satelliteand the Spectfdatasets available from
the UCI repository [1], showing tendencies to Figures 1 and 2. We also conducted experiments on
various benchmark datasets, and found that the iterative algorithm typically converges slowly, and
sometimes suffers from the local minima problem, while our analytic-form gives the global solution
immediately (further experimental results on various datasets with different initialization schemes
are shown in Appendix B in the supplementary).
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Iterative is slow and can be trapped at local minima.
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L = 44,

M = 267,

H
! =? .

L = 36,

M = 6435,

H
! =? .
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Result with benchmark data (UCI)

Free energy Computation time Estimated rank

Similar tendency is observed.
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Figure 3: Experimental results for theSatdataset (L = 36, M = 6435).
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Figure 4: Experimental results for theSpectfdataset (L = 44, M = 267).

5 Conclusion and Discussion

In this paper, we have analyzed the fully-observed variational Bayesian matrix factorization (VBMF)
under matrix-wise independence. We have shown that the VB solution under matrix-wise indepen-
dence essentially agrees with the simpliÞed VB (simpleVB) solution undercolumn-wiseindepen-
dence. As a consequence, we can obtain the global VB solution under matrix-wise independence
analyticallyin a computationally very efÞcient way.

Our analysis assumed uncorrelated priors. With correlated priors, the posterior is no longer uncor-
related and thus it is not straightforward to obtain a global solution analytically. Nevertheless, there
exists a situation where an analytic solution can be easily obtained: Suppose there exists anH ! H
non-singular matrixT such that both ofC′

A = TCAT" andC′
B = ( T−1)"CBT−1 are diagonal.

We can show that the free energy (13) is invariant under the following transformation for anyT:

A " AT ", ! A " T! AT", CA " TCAT",

B " BT −1, ! B " (T−1)T ! BT−1, CB " (T−1)"CBT−1.

Accordingly, the following procedure gives the global solution analytically: the analytic solution
given the diagonal(C′

A, C′
B) is Þrst computed, and the above transformation is then applied.

We have demonstrated the usefulness of our analytic solution in probabilistic PCA. On the other
hand, robust PCA has gathered a great deal of attention recently [5], and its Bayesian variant has
been proposed [2]. We expect that our analysis can handle more structured sparsity, in addition to
the current low-rank inducing sparsity. Extension of the current work along this line will allow us to
give more theoretical insights into robust PCA and provide computationally efÞcient algorithms.

A natural extension of matrix factorization would betensor factorization[11, 6, 8, 24]. In our pre-
liminary study so far, we saw that the analytic VB solution for tensor factorization is not attainable,
at least in the same way as MF. Nevertheless, we conjecture that the optimal solution still has diag-
onal covariances, which will allow us to greatly simplify inference algorithms and reduce necessary
memory storage and computational costs.

Finally, a more challenging direction is to handle priors correlated overrows of A andB . This
allows us to model correlations in the observation space, and capture, e.g., short-term correlation
in time-series data and neighboring pixels correlation in image data. Analyzing such a situation, as
well as missing value imputation is our important future work.
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Figure 3: Experimental results for the Sat dataset (L = 36,M = 6435).
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Figure 4: Experimental results for the Spectf dataset (L = 44,M = 267).

5 Conclusion and Discussion

In this paper, we have analyzed the fully-observed variational Bayesian matrix factorization (VBMF)
under matrix-wise independence. We have shown that the VB solution under matrix-wise indepen-
dence essentially agrees with the simplified VB (simpleVB) solution under column-wise indepen-
dence. As a consequence, we can obtain the global VB solution under matrix-wise independence
analytically in a computationally very efficient way.

Our analysis assumed uncorrelated priors. With correlated priors, the posterior is no longer uncor-
related and thus it is not straightforward to obtain a global solution analytically. Nevertheless, there
exists a situation where an analytic solution can be easily obtained: Suppose there exists an H ! H
non-singular matrix T such that both of C ′

A = TCA T" and C ′
B = ( T−1)"CB T−1 are diagonal.

We can show that the free energy (13) is invariant under the following transformation for any T :

A " AT", ΣA " TΣA T", CA " TCA T",

B " BT−1, ΣB " (T−1)T ΣB T−1, CB " (T−1)"CB T−1.

Accordingly, the following procedure gives the global solution analytically: the analytic solution
given the diagonal (C ′

A , C ′
B ) is first computed, and the above transformation is then applied.

We have demonstrated the usefulness of our analytic solution in probabilistic PCA. On the other
hand, robust PCA has gathered a great deal of attention recently [5], and its Bayesian variant has
been proposed [2]. We expect that our analysis can handle more structured sparsity, in addition to
the current low-rank inducing sparsity. Extension of the current work along this line will allow us to
give more theoretical insights into robust PCA and provide computationally efficient algorithms.

A natural extension of matrix factorization would be tensor factorization [11, 6, 8, 24]. In our pre-
liminary study so far, we saw that the analytic VB solution for tensor factorization is not attainable,
at least in the same way as MF. Nevertheless, we conjecture that the optimal solution still has diag-
onal covariances, which will allow us to greatly simplify inference algorithms and reduce necessary
memory storage and computational costs.

Finally, a more challenging direction is to handle priors correlated over rows of A and B. This
allows us to model correlations in the observation space, and capture, e.g., short-term correlation
in time-series data and neighboring pixels correlation in image data. Analyzing such a situation, as
well as missing value imputation is our important future work.
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! Global VB solution coincides with the SimpleVB solution.
! The same holds for empirical VB.
! Practical advantages were shown.
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Conclusion

Future work
! Tensor.
! Non-spherical (correlated) prior.
! Missing value prediction.
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Outline of proof (Theorem 1)

F =
LM

2
log ! 2 +

M
2

log
|CA |
|" A |

+
L
2

log
|CB |
|" B |

+
�Y�2

2! 2 + const.

+
1
2

tr
�

C! 1
A

�
�A" �A + M " A

�
+ C! 1

B

�
�B " �B + L" B

�

+ ! ! 2
�
−2 �A" Y " �B +

�
�A" �A + M " A

� �
�B " �B + L" B

���

We prove that the free energy

Strategy:

1. show that any minimizer is stationary point.
2. consider perturbation around a minimizer.
3. necessary condition results in diagonality.

cah cbh �= cah ! cbh ! for h� �= hWe focus on the case when for simplicity.

! A ! Bis minimized when and are diagonal.
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F (! ) =
1
2

tr
!

C! 1
A C! 1

B ! C1/ 2
A

"
B "# B " + L" "

B

#
C1/ 2

A ! #
$

+ const.

NIKON CORPORATION
Core Technology Center

December 12, 2011

Perturbation around a solution

Ω = IH( �A,ΣA, �B,ΣB) = ( A! ,Σ!
A, B! ,Σ!

B) .when 

F (Ω) is minimized when Ω = IH .

!A = A∗C−1/ 2
A ! �C1/ 2

A , " A = C1/ 2
A ! C−1/ 2

A " ∗
A C−1/ 2

A ! �C1/ 2
A ,

!B = B∗C1/ 2
A ! �C−1/ 2

A , " B = C−1/ 2
A ! C1/ 2

A " ∗
B C1/ 2

A ! �C−1/ 2
A .

(A∗, Σ∗
A , B ∗, Σ∗

B )Assume that is a minimizer of F .

!Consider the following perturbation with an orthogonal matrix :

Then, the free energy can be written as a function of ! :
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!

B!" B! + L! !
B

!A =
"

#!a1, . . . , #!aM

$!
= Y ! !B

! A

" 2
, ! A = " 2

"
!B! !B + L! B + " 2C" 1

A

$" 1
,

!B =
%

#!b1, . . . ,
#!bL

&!

= Y !A
! B

" 2
, ! B = " 2

"
!A! !A + M ! A + " 2C" 1

B

$" 1
.
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Use Lemma 1

diagonal

F (! ) =
1
2

tr
!

C! 1
A C! 1

B ! C1/ 2
A

"
B "# B " + L" "

B

#
C1/ 2

A ! #
$

+ const.

Lemma 1: F (Ω) Ω = IHIf is minimized when  , then   Φ  is diagonal.    

is diagonal!

A!" A! + M ! !
A is also diagonal.)(Similarly,

Stationarity conditions

(Σ!
A , Σ!

B )imply that are diagonal (Q.E.D.).

13



17


